Multimodal learning for facial expression recognition
نویسندگان
چکیده
In this paper, multimodal learning for facial expression recognition (FER) is proposed. The multimodal learning method makes the first attempt to learn the joint representation by considering the texture and landmark modality of facial images, which are complementary with each other. In order to learn the representation of each modality and the correlation and interaction between different modalities, the structured regularization (SR) is employed to enforce and learn the modality-specific sparsity and density of each modality, respectively. By introducing SR, the comprehensiveness of the facial expression is fully taken into consideration, which can not only handle the subtle expression but also perform robustly to different input of facial images. With the proposed multimodal learning network, the joint representation learning from multimodal inputs will be more suitable for FER. Experimental results on the CKþ and NVIE databases demonstrate the superiority of our proposed method. & 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Facial Expression Recognition Based on Structural Changes in Facial Skin
Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...
متن کاملLocal gradient pattern - A novel feature representation for facial expression recognition
Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...
متن کاملImproving LNMF Performance of Facial Expression Recognition via Significant Parts Extraction using Shapley Value
Nonnegative Matrix Factorization (NMF) algorithms have been utilized in a wide range of real applications. NMF is done by several researchers to its part based representation property especially in the facial expression recognition problem. It decomposes a face image into its essential parts (e.g. nose, lips, etc.) but in all previous attempts, it is neglected that all features achieved by NMF ...
متن کاملFacial Expression Recognition Based on Anatomical Structure of Human Face
Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...
متن کاملMultimodal Emotion Recognition Integrating Affective Speech with Facial Expression
In recent years, emotion recognition has attracted extensive interest in signal processing, artificial intelligence and pattern recognition due to its potential applications to human-computer-interaction (HCI). Most previously published works in the field of emotion recognition devote to performing emotion recognition by using either affective speech or facial expression. However, Affective spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 48 شماره
صفحات -
تاریخ انتشار 2015